Témata
Reklama

Vědci objevili strategii, jak zlepšit efektivitu enzymů

Odborníci z Loschmidtových laboratoří při Masarykově univerzitě v Brně spolu s vědci z Ústavu fyzikální chemie J. Heyrovského se mohou pochlubit významným objevem, který otiskl mezinárodně uznávaný časopis Journal of the American Chemical Society. Vědecké týmy z obou institucí se zaměřily na studium enzymů, konkrétně na mechanismy, jež mohou výrazně zvýšit jejich účinnost. Výzkum od prvních pokusů až po závěrečné publikování výsledků trval více než šest let a získané poznatky by mohly nalézt využití mimo jiné v biotechnologickém či farmaceutickém průmyslu.

Reklama
Reklama
Reklama
Výzkumný projekt, jenž je řešen v rámci spolupráce dvou významných českých institucí, si kladl za cíl porozumět způsobu, jak mohou enzymy pomocí své dynamiky ovlivnit průběh chemických reakcí. Konkrétně se týmy Jana Sýkory z Heyrovského ústavu a Zbyňka Prokopa z Loschmidtových laboratoří při Masarykově univerzitě zaměřily na variantu enzymu dehalogenázy.

Pro enzym dehalogenázy lze najít praktické využití třeba v enviromentálních oblastech, kde může přeměňovat toxické molekuly obsahující atomy chloru a bromu na alkoholy, které jsou méně škodlivé vůči životnímu prostředí. Dále, díky schopnosti rozpoznávat molekuly, které mají shodné chemické složení, ale liší se prostorovým uspořádáním atomů, jsou tyto enzymy využívány v organické syntéze,“ vysvětluje vlastnosti zkoumaných látek Jan Sýkora, jeden z vedoucích projektu z Heyrovského ústavu.

Enzymy dehalogenázy jsou poměrně velké molekuly. K samotné chemické reakci, jež přeměňuje výchozí látky na konečné produkty, dochází v rámci enzymu v přesně daném takzvaném aktivním místě. Toto místo je uzpůsobeno molekulám vstupujícím do reakce a předpokládalo se, že jeho uspořádání a vlastnosti mají dominantní vliv pro účinnost enzymu. Jenže v řadě případů jsou tato aktivní místa pohřbena hluboko uvnitř molekuly enzymu a modifikovaná látka se tam musí nejprve určitým způsobem dostat.

„Do aktivního místa proto přicházejí molekuly systémem tunelů a bran, které mohou jejich průchod ovlivnit. Doposud se tvarům a vlastnostem těchto tunelů a bran nepřikládala důležitost. My jsme se ale zaměřili právě na tyto transportní cesty, jejichž tvar a dynamika ovlivňují, které molekuly mohou proniknout dovnitř či ven, a tím se mění i účinnost daných enzymů,“ doplnila první autorka studie Piia Kokkonen z Loschmidtových laboratoří.

Jak ovlivnit vstupní brány


Vysoká aktivita enzymu dehalogenázy přivedla vědce k teorii, že enzym může přecházet mezi dvěma formami, z nichž každá je vhodná pro určitou fázi reakce. „Podobá se to zavíracímu noži s více nástroji, které se dají rychle vyměňovat. Tím se různé úkony potřebné pro chemickou přeměnu stávají velice rychlými a efektními,“ přiblížil teorii Jan Sýkora. Přesněji řečeno, enzym může existovat v otevřené formě, která umožňuje účinný transport molekul k aktivnímu místu, a v zavřené formě, jež je výhodná pro samotnou chemickou přeměnu substrátu na produkt. Vědci dokázali odhalit rychlé překmitávání mezi těmito dvěma stavy, tedy dynamiku daného proteinu, která je zodpovědná za vysokou aktivitu studovaného enzymu.

Vědci z obou skupin spolupracovali na tom, aby za pomoci experimentů a počítačových simulací ukázali, jak mohou změny ve struktuře enzymu ovlivnit dynamiku vstupních bran a tím také enzymatickou aktivitu. K důkazu využili jednak takzvanou tranzitní kinetiku, která mapuje rychlost reakce, a také fluorescenční spektroskopii, která je schopná zachytit přechod mezi jednotlivými formami enzymu v reálném čase. Kombinací obou technik se podařilo popsat rychlé přeskupování mezi dvěma výše popsanými prostorovými uspořádáními enzymu.

Jak přesně vypadají tyto dva stavy na molekulární úrovni, pak za pomoci počítačové simulace popsala právě Kokkonen.
„Enzymy jsou bílkoviny složené z jednotlivých aminokyselin. Při počítačové simulaci měníme jednu nebo více z nich a kolegové pak musí v laboratoři připravit takto upravenou bílkovinu, vyčistit ji a otestovat. Změny aminokyselin totiž mohou měnit tvar a dynamiku enzymů a tedy i jejich vlastnosti,“ vysvětlila.

Základ pro vývoj v biotechnologii a farmacii

Výzkum by se nyní podle Sýkory měl soustředit i na další enzymy, a ideálně přijít na způsob, jak vnést podobné dynamické chování „bran“ do dalších variant, a tím výrazně zlepšit jejich aktivitu. Kokkonen dodává, že výsledky publikovaného výzkumu mohou posloužit jako základ pro další vývoj enzymů, které naleznou uplatnění v biomedicíně při efektivní přípravě léčiv.

I když celý projekt dosud zaměstnal obě vědecká pracoviště na více než šest let, rozhodně ještě není u konce. Spolupráce mezi Heyrovského ústavem a Loschmidtovými laboratořemi tak bude pokračovat i nadále. Dosud se na projektu a bádání podílelo asi 15 vědců, přičemž dvě třetiny výzkumníků působí v rámci Masarykovy univerzity.

Zdroj: tisková zpráva Ústavu fyzikální chemie J. Heyrovského AV ČR a Loschmidtovy laboratoře Přírodovědecké fakulty Masarykovy univerzity

Zpracováno redakcí.

Reklama
Firmy
Související články
Budoucnost stavebnictví: Odpadní termoplasty

Různé polymerní typy odpadů, pro které zatím není širší uplatnění. To je vedlejší produkt, vznikající při výrobě a zpracování plastů. Čeští výzkumníci se proto pustili do studia jejich klíčových vlastností, aby umožnili jejich následné zpracování. Výsledkem jejich práce je vytvoření uceleného přehledu možností využití odpadních termoplastů ve výrobě kompozitních materiálů pro stavebnictví. Z odpadu lze tedy nyní vyrábět různé stavební prvky z polymerbetonu nebo například odolné dlaždice.

Reklama
Reklama
Reklama
Reklama
Reklama
Předplatné MM

Dostáváte vydání MM Průmyslového spektra občasně zdarma na základě vaší registrace? Nejste ještě členem naší velké strojařské rodiny? Změňte to a staňte se naším stálým čtenářem. 

Proč jsme nejlepší?

  • Autoři článků jsou špičkoví praktici a akademici 
  • Vysoký podíl redakčního obsahu
  • Úzká provázanost printového a on-line obsahu ve špičkové platformě

a mnoho dalších benefitů.

... již 25 let zkušeností s odbornou novinařinou

      Předplatit