Témata
Zdroj: Coherent

Svařování mědi pomocí vláknového laseru

Rychlý rozvoj v oblasti elektromobility vede ke zvýšení poptávky po svařování mědi. To, co ji činí pro danou aplikaci ideální (tj. vysoká elektrická a tepelná vodivost), ji zároveň činí obtížně svařitelnou konvenčními vláknovými lasery. Díky vyšší efektivitě, zhruba dvojnásobné, někteří výrobci zkoušejí používat zelené pevnolátkové lasery. Výsledkem je stabilnější a méně citlivý proces, než jaký byl možný u standardních vláknových laserů.

Petr Březina

V oblasti laserů a přístrojové techniky se Petr Březina pohybuje od roku 2011, předtím vystudoval České vysoké učení technické v Praze, Fakultu elektrotechnickou se zaměřením na elektrotechniku a radiotechniku. Ve firmě Optixs se Petr Březina zaměřuje na výkonné lasery, polohovací systémy pro mikro- a nanopolohování, antivibrační systémy a elektromagnetické stínění.

Reklama
Průřez svárem mědi pomocí ARM laseru. (Zdroj: Coherent)

Bohužel samotný proces frekvenční konverze z infračerveného čerpacího laseru na zelené světlo má účinnost pouze 50 %. K získání 2 kW zeleného výstupního výkonu je zapotřebí IR laser o výkonu 4 kW. Z tohoto důvodu mají tyto lasery nízkou energetickou účinnost, o omezené životnosti některých klíčových komponent nemluvě.

Reklama
Reklama

Vláknové lasery s koaxiálním svazkem

Řešení představila společnost Coherent v podobě řady vláknových laserů HighLight ARM (Adjustable Ring Mode), což jsou speciální vláknové lasery s dvojitým svazkem v koaxiálním uspořádání a možností nezávislé regulace výkonu v jednotlivých svazcích. U těchto laserů došlo ke spojení vysoké energetické účinnosti a dosažení dobré kvality sváru (nízký rozstřik, minimální praskání a snížená pórovitost, není potřeba přídavný drát). Typickými příklady aplikací jsou svařování pozinkované oceli, svařování prvků hnacího ústrojí a svařování hliníkových dílů.

Hloubka průniku při svařování pro 4kW vláknový laser ARM s koaxiálním svazkem v porovnání s 2kW zeleným laserem. (Zdroj: Coherent)

Při zkoušce svařování mědi byla měřena účinnost ARM laseru a porovnána s dříve publikovanými výsledky pro 2kW zelený laser. Publikovaná data pro zelený laser ukazovala (konstantní) průřez svaru 0,5 mm² a hloubku průniku asi 1 mm s rychlostí 200 mm.s-1. Laser ARM byl nakonfigurován tak, aby dosáhl stejných výsledků. Konkrétně byl potřeba výkon 3,5 kW a rychlost svaru 300 mm.s-1. Normalizace těchto výsledků poskytuje lineární výkon laseru 10 J.mm-1 pro ARM laser, ve srovnání s 11,8 J.mm-1 pro zelený laser. ARM laser tak dosahuje výrazně vyšší rychlosti i přesto, že lehce ztrácí na samotné účinnosti sváření.

Související články
Názorové fórum odborníků

Energetická náročnost výrobních provozů zvláště v oblasti tváření, svařování či v oblasti zpracování plechů a profilů je důležitým kritériem pro udržitelnou výrobu. Jakou roli hrají úvahy o energetické náročnosti a budoucí udržitelnosti provozu při vývoji nových zařízení?

Jaká je energetická náročnost vámi vyráběných strojů a zařízení ve srovnání s jejich předchozími generacemi? Jakým způsobem bylo případné snížení spotřeby energií dosaženo?

Kompaktní laserová pracovní stanice

Laserové zpracování kovů, které bylo kdysi vyhrazeno pro drahé letecké a medicínské technologie, se postupem času stalo běžnou technologií v mnoha průmyslových odvětvích. Ve srovnání s tradičními laserovými zdroji, které vyžadují drahý spotřební materiál a pravidelnou údržbu optických součástí, jsou dnešní vláknové lasery v podstatě bezúdržbové. Kromě velmi vysoké technické úrovně a sofistikovanosti, které tyto lasery nabízejí, jsou nyní mimořádně cenově konkurenceschopné. Náklady na laserové diody se v posledních letech snížily o více než 80 , a proto se stroje používající vláknové lasery staly mimořádně cenově efektivním řešením pro mnoho aplikací zpracování materiálu.

Aktuální možnosti v laserovém svařování

Laserové svařování lze v dnešní době považovat za velice moderní technologii. Vysoké svařovací rychlosti, štíhlý svar a z toho plynoucí výhody jsou pozitiva, která umožnila začlenění této metody do progresivních výrobních technologií. Tento článek si klade za cíl představit aktuální možnosti laserových svařovacích technologií.

Související články
Laserová svařovací buňka, která promíjí nepřesnosti v plechu

Vstup do oblasti laserového svařování se stává snadnějším než dříve díky tolerantnímu laserovému svařování metodou FusionLine a balíčku pro náběh výroby. Nové konstrukční prvky a softwarové komponenty zjednodušují obsluhu.

Reklama
Reklama
Reklama
Reklama
Související články
Pokročilé metody laserového svařování

V současné době existují nové metody laserového svařování, které dále zlepšují základní metodu. V současné době existují nové metody laserového svařování, které dále zlepšují základní metodu. Podstatou nových metod je laserová hlava obsahující systém dvou vychylovacích zrcadel doplněných speciální optikou. Díky tomu lze laserovým paprskem velice rychle přebíhat v dané ploše. Svařování s touto hlavou se nazývá skenerové svařování. V provedeném experimentu byla demonstrována významná časová úspora při využití této metody oproti svařování běžnou svařovací hlavou vedenou robotem. Druhou metodou, opět využívající vychylování laserového svazku zrcadly, je svařování s rozmítaným svazkem. U této metody dochází kromě posuvové rychlosti k mikropohybu laserového svazku podél svařované trajektorie. Řízením parametrů mikropohybu můžeme měnit jak šířku závaru, tak i mikrostrukturu svaru, jak je opět předvedeno v rámci několika experimentů.

Robotické zváranie laserom s kamerovým navádzaním

Centrum laserového zvárania na robotických pracoviskách s kamerovým navádzaním v juhomoravskej spoločnosti BAST je schopné realizovať maximum, čo vie v súčasnosti laserová technológia v priemysle ponúknuť. Okrem iného možno automaticky zvoliť polohu ohniska, ktorá je kľúčová pre kvalitu a hĺbku zvaru. Robot FANUC si vďaka kamerovému systému hravo poradí aj s nepresnosťami prípravku, chybami operátora pri zakladaní výrobku alebo vstupného materiálu.

Obrábění laserem pro všechna odvětví

Od doby, kdy byl objeven a vyroben první laser roku 1960, se uplatnění laserů rozšířilo téměř do všech oborů lidské činnosti. Dnes se s lasery setkáváme téměř všude ? ve zdravotnictví, potravinářství, stavebnictví a logicky i ve strojírenství. Velice často se lasery uplatňují v procesech zpracování a obrábění materiálů jako výrobní nástroje. Oblibu si získaly díky svým schopnostem rychlého procesu obrábění, minimální hlučnosti, vysoké flexibilitě, minimálnímu tepelnému ovlivnění okolního materiálu a dalším.

Průmyslové lasery (2) - svařovací lasery

První laboratorní pokusy svařování pomocí laseru se objevily záhy poté, co byly postaveny první prototypy laseru na počátku šedesátých let. Výrazněji se však aplikace laserového svařování začaly uplatňovat po vynálezu Nd:YAG laseru v roce 1964 a s postupným zvyšováním dosahovaných výkonů CO2 laserů, zpočátku v laboratořích a ke konci šedesátých let i v průmyslovém nasazení.

Laserové svařování pro Průmysl 4.0

Vláknové lasery jsou významným nástrojem pro svařovací aplikace, které slouží mnoha zavedeným odvětvím i novým rychle rostoucím oborům. Pro progresivní výrobce, kteří již výhod laserového svařování využívají, zůstává otázkou, jak dále zlepšit efektivitu procesu a být krok napřed oproti konkurenci. Optimalizace jakéhokoli průmyslového procesu pro inteligentní výrobu vyžaduje vysoce kvalitní on-line sběr dat. Stále roste potřeba technologií, které pomohou lépe monitorovat proces laserového svařování.

Výrobní laserové technologie

Výrobní laserové technologie lze dělit mnoha způsoby-, podle použitého výkonu, délky pulzu nebo interakce s materiálem. Nejjednodušší způsob rozdělení laserových technologií je do tří skupin: dělení a odebírání materiálu, spojování materiálu a úprava povrchu materiálu. Vzhledem k rozmanitosti využití laseru není toto dělení zcela jednoznačné a existuje několik dalších technologií, které se nacházejí mezi těmito kategoriemi.

MSV ve znamení technologií

Všichni, kdo máme něco společného se strojírenstvím, pevně věříme, že se v letošním roce opět otevřou brány brněnského výstaviště pro meku strojařů z celého světa – Mezinárodní strojírenský veletrh. Na MSV se letos, kromě lidí z dalších oborů, setkají i tvůrci nejrůznějších sofistikovaných technologií. Proto jsme se na postřehy a názory tentokrát zeptali Ing. Michala Badina ze společnosti TOX Pressotechnik a Ing. Aleše Zapletala ze společnosti Raveo.

Automatizace není odpovědí na všechny otázky

Primárním cílem zavádění automatizace a robotizace je nejen zajistit více času, jak jsme si řekli v minulém díle, ale jejím účelem je také usnadnit lidstvu složité a zdraví škodlivé úkoly. Automatizace se nasazuje v oblastech stereotypní a nebezpečné práce. Motivací firem může být i škálovatelnost, maximalizace zisku a v neposlední řadě nižší počet lidských selhání. Tento díl našeho seriálu Fenomén automatizace se zamýšlí nad tím, proč, kde a jak automatizovat, a dalšími otázkami.

Téma: technologie pro výrobu forem

Díly, součásti či výrobky, které spatřily světlo světa díky tomu, že byly vylisovány, odlity či vykovány ve formě, jsou doslova všude kolem nás. Forma je zařízení často velmi složité a komplexní a k její výrobě je potřeba řada špičkových technologií. Následující článek představuje některé z nich.

Tvoříme historii vodního paprsku

Každá investice do podniká je spojena s velkým očekáváním. Jistou dávku důvěryhodnosti ve správnou investice může dávat také historie firmy i samotné technologie. Technologie řezání vysokotlakým vodním paprskem Flow slaví v tomto roce již 50 let, resp. 40 let v případě abrazivního vodního paprsku.

Reklama
Předplatné MM

Dostáváte vydání MM Průmyslového spektra občasně zdarma na základě vaší registrace? Nejste ještě členem naší velké strojařské rodiny? Změňte to a staňte se naším stálým čtenářem. 

Proč jsme nejlepší?

  • Autoři článků jsou špičkoví praktici a akademici 
  • Vysoký podíl redakčního obsahu
  • Úzká provázanost printového a on-line obsahu ve špičkové platformě

a mnoho dalších benefitů.

... již 25 let zkušeností s odbornou novinařinou

      Předplatit