Témata

Akademie tváření: Technologičnost konstrukce při ohýbání

Přinášíme vám další díl naší Akademie, kterou pro vás ve spolupráci s odborníky Ústavu strojírenské technologie FS ČVUT v Praze a technickými specialisty firmy Trumpf již třetím rokem připravujeme. V jednotlivých příspěvcích se postupně věnujeme konkrétním technologiím zpracování plechu, jež jsou představeny jak po teoretické stránce, tak následně v konkrétních aplikacích na strojích Trumpf.
Tento článek volně navazuje na předchozí v rámci akademie tváření, především na již popsanou problematiku ohýbání, odpružení v plošném tváření a technologičnost konstrukce v návrhu výstřižku. Článek popisuje obecná pravidla z hlediska technologičnosti konstrukce pro technologie ohýbání.
Rádi přivítáme vaše připomínky jak ke koncepci seriálu, tak i k samotnému obsahu konkrétních příspěvků.
Za autorský kolektiv Roman Dvořák
roman.dvorak@mmspektrum.com

Tento článek je součástí seriálu:
Akademie tváření
Díly
František Tatíček

Vedoucí skupiny Tváření na FS ČVUT v Praze

Roman Dvořák

Je absolventem oboru Strojírenská technologie Fakulty strojní ČVUT v Praze, kde studuje kombinovanou formu doktorského studia. V roce 1997 nastoupil do vydavatelství Vogel Publishing na post odborného redaktora vznikajícího strojírenského titulu MM Průmyslové spektrum. V roce 1999 přijal nabídku od německého vlastníka outsourcingovat titul do vlastního vydavatelství. 

Základní zásady při navrhování technologičnosti konstrukce při ohýbání jsou analogické navrhování konstrukce výstřižků. V tomto příspěvku uvedeme pouze specifické zásady, které platí pro navrhování konstrukce při ohýbání.

Praskání a tvorba vln

Při ohýbání materiálu mohou kromě již dříve uváděných problémů, jako byla deformace průřezu a odpružení materiálu, nastat další problémy, mezi něž patří praskání materiálu a tvoření vln.

K praskání materiálu (vznik trhlin na vnější straně) dochází v okamžiku, kdy dojde k překročení kritické hodnoty poloměru ohybu r/s, což může být způsobeno zpevněním materiálu, stavem materiálu (žíhaný, tvářený za studena apod.) nebo průběhem vláken. Osa ohybu by proto měla být kolmá na směr vláken materiálu (odpružení je ale větší) nebo minimálně pod úhlem 30°. Polotovary připravované stříháním mívají na střižných plochách otřep. Je nutné dbát na umístění přístřihu v nástroji s respektováním tohoto otřepu nebo jej odstranit.

Při návrhu ohýbaných dílů je třeba respektovat požadavky na hodnoty poloměrů ohybu. Poloměr ohybu musí být alespoň takový, aby v krajních vláknech došlo k překročení hodnoty meze kluzu (ke vzniku plastické deformace). Poloměr nesmí však být ani příliš malý, aby deformace krajních vláken nepřekročila hodnotu meze pevnosti. Poloměr ohybu se má volit z hlediska odpružení co nejmenší, ale vzhledem k tvárnosti a tloušťce ohýbaného materiálu co největší. Jinak může docházet k destrukci v ohýbaném průřezu.

Pro zachování kvalitních výrobků je nutné dodržovat následující obecné zásady:
• osa ohybu by měla směřovat kolmo na směr vláken vzniklých při válcování;
• poloměr ohybu je nutno volit co nejmenší, aby se zmenšilo odpružení, ale také co největší, aby nedošlo ke vzniku trhlin nebo nežádoucímu ztenčení materiálu;
• oproti volnému ohybu dát přednost ohýbání s kalibrací;
• zvolit vhodnou úpravu funkčních částí ohýbacího nástroje, např. pro zamezení posunutí místa ohybu při ohýbání součásti;
• nezmenšovat tolerance rozměrů ohýbaného tvaru pod hranici dosažitelnou běžným ohýbáním;
• vzdálenost místa ohybu od kraje materiálu má být tím větší, čím je materiál tvrdší;
• uvolnit místo ohybu od neohýbaných části materiálu pro eliminaci nepravidelnosti ohybu a eliminaci rizika natržení okraje;
• pro eliminaci rizika posunu materiálu při ohýbání z důvodů krátkých nebo nestejně dlouhých částí je nutné materiál fixovat;
• jsou-li v oblasti ohybu přesné otvory, je nutné vystřihnout je dodatečně;
• předem vystřižené otvory nebudou deformovány, když jejich okraje budou od ohybu v dostatečné vzdálenosti;
• osa ohybu by měla směřovat kolmo k obrysu součásti, aby nedocházelo k posunutí dílu při ohybu, popř. nežádoucí deformaci průmětu ohybu;
• ostrých ohybů lze docílit jen dodatečným ražením, ale je nutné v místě ražení vytvořit zásobu materiálu;
• neuzavírat součást vícenásobnými ohyby, aby nedocházelo na pohyblivé čelisti složitého tvaru k problémům při zakládání či vyjímání součásti;
• výlisky s velkými poloměry ohybu jsou málo tuhé a je účelné je vyztužit žebry;
• v místě ohybu dochází vždy ke ztenčení materiálu, doporučuje se připouštět 20% ztenčení;
• ponechávat netolerované rozměry ohýbaných výlisků všude, kde to funkce součásti připouští.

Některé zásady podrobněji

Při výrobě plechů vzniká v materiálu vláknitá struktura. Pokud provádíme pouze ohyb v jednom směru, měla by být osa ohybu kolmá na vlákna. Pokud provádíme více ohybů, jejichž osy jsou na sebe kolmé, pootočíme nástřih o 45°. Při ohýbání rovnoběžně s průběhem vláken mohou při určitém poloměru ohybu vzhledem k tloušťce ohýbaného materiálu na povrchu dílu vznikat trhliny.

Obr. 1. Umístění osy ohybu v závislosti směru válcování

Při výrobě otvorů blízko umístěných u ohybu musíme dodržet jejich minimální vzdálenost od ohybu, aby nedocházelo ke zdeformování otvoru. Minimální vzdálenost od místa ohybu je r + 2s(r – poloměr ohybu, s – tloušťka plechu). Pokud potřebujeme otvor, který je v menší vzdálenosti, vyrábíme ho až po ohybu. Je také možné vystřihnout „zdeformovaný otvor“, který se nám po samotném ohybu zdeformuje na požadovaný tvar. Tvar stříhaného otvoru v takovém případě bývá stanovován experimentálně, tento postup je vhodný u hromadně vyráběných dílů.

Obr. 2. Vzdálenost otvoru od osy ohybu

Obr. 3. Zjednodušení výchozího tvaru (vlevo méně vhodné, vpravo vhodnější)

Zásady technologičnosti konstrukce mohou ovlivnit i počet jednotlivých ohybů. Na obr. 3 jsou dva tvarově podobné díly, které lze vyrobit s menším či větším počtem ohybů. Výrobně je komplikovanější provést ohyb až do kraje materiálu.

Obr. 4. Minimální délka ramene při ohýbání

Vzdálenost místa ohybu od okraje materiálu závisí především na vlastnostech materiálu. S rostoucí tvrdostí materiálu roste tato vzdálenost. Pro poloměr ohybu r ≤ 1 mm platí minimální délka ramena b ≥ 3(s+r), (nejméně však 2 mm). Pro poloměr ohybu r >1 mm je minimální délka ramena b ≥ (2,5 – 3)s.

Tab. 1. Příklady minimálních hodnot poloměrů ohybu pro vybrané jakosti materiálů

Ing. František Tatíček, Ing. Martin Ouška, Ing. Lukáš Turza

frantisek.taticek@fs.cvut.cz

ČVUT v Praze, Fakulta strojní

Související články
MM Podcast: Každé vítězství má svůj příběh

Olga Girstlová byla v 90. letech nepřehlédnutelnou součástí vznikajícího podnikatelského prostředí tehdejšího Československa. Společně se svým otcem a manželem založili v květnu 1990 společnost GiTy. Vsadili na komoditu s obrovským potenciálem technologického růstu. Po 15 letech manželé Girstlovi však dospěli k rozhodnutí společnost prodat a dále se věnovat jiným komoditám, jako například ekologickému stavitelství. 

CIMT 2021 plně prezenční

Zatímco je celý svět paralyzovaný restrikcemi proti šíření koronaviru covid-19, v Pekingu byl dnes zahájený veletrh obráběcích a tvářecích strojů China International Machine Tool Show CIMT 2021 v plné prezenční formě a téměř shodného rozsahu, jako ročníky předešlé. Ve stejný den a po celý týden, jako Hannover Messe Digital Edition – průmyslový veletrh v plně digitální platformě.

Hannover Messe 2021

Inovace, vytváření sítí a sdílení zkušeností ve věku průmyslové transformace – to jsou klíčová motta, která představují letošní ročník digitálního Hannover Messe, na kterém více než 1 800 vystavovatelů představí svá řešení pro výrobu a energetické systémy budoucnosti. Od umělé inteligence po robotiku, od ochrany klimatu po vodík. Nejdůležitější světový průmyslový veletrh plní svoji roli jako inovační a síťová platforma a vytváří uprostřed koronové pandemie globální platformu pro výměnu zkušeností v době průmyslové transformace.

Související články
MM Podcast: Glosa - God Save the Queen

V naivní představě ekonomického perpetuum mobile zaměstnáváme v poměru k reálné ekonomice nejvyšší počet lidí ve státní a veřejné správě v rámci nejrozvinutějších zemí OECD. Rakovinotvorný rozbujelý a nevýkonný úřednický aparát, vědomě bojkotující vznik e-státu, dokonale paralyzuje správu věcí veřejných. A jeho solidarita s aktuálně zdecimovaným privátním sektorem? Home office na 100 % mzdy, její valorizace, statisícové odměny na MF za ušetřené miliardy (…). 

Související články
V hlavní roli strojař

Fakulta strojní VŠB-TUO se pro letošní rok v rámci náborové kampaně vrací k úspěšné sérii V hlavní roli strojař. Kampaň komunikuje myšlenku, že strojaři jsou hvězdy hrající hlavní roli v moderním světě. Jejím cílem je zlepšit vnímání oboru strojírenství, posílit brand fakulty, a samozřejmě také nalákat uchazeče ke studiu strojařiny.

Chytrá kombinace systémů

Vývoj obráběcích technologií v minulém století nabral na obrátkách. Dnes jsme tuto technologii dotáhli téměř k dokonalosti – jsme schopni vyrobit předměty libovolných tvarů v přesnostech na tisíciny milimetru. Dalo by se říct, že pro zlepšení zde už příliš prostoru nezbývá, přesto nás přední výrobci obráběcích strojů a nástrojů pravidelně přesvědčují o opaku. Progresivní a inovativní přístup společnosti Ceratizit je toho jen dalším důkazem. Nedávno na trh uvedla přesnou vyvrtávací hlavu Komflex z produktové řady Komet, která umožňuje automatickou korekci průměru v případě vyvrtávání přesných otvorů. Jak to nástroj dokáže, upřesňuje v následujícím rozhovoru technický ředitel společnosti Ceratizit Česká republika Ing. Jan Gryč.

MSV ve znamení materiálů i technologií

Všichni, kdo máme něco společného se strojírenstvím, pevně věříme, že se v letošním roce opět otevřou brány brněnského výstaviště pro Mekku strojařů z celého světa – Mezinárodní strojírenský veletrh. Na MSV se letos, mimo lidi z dalších oborů, setkají i výrobci plastů a též špičkových zařízení pro plastikářskou výrobu. Na naše otázky odpovídají Pavel Tuláček, jednatel společnosti Gorilla Machines, a David Svoboda, jednatel Sumitomo (SHI) Demag Plastics Machinery Česko.

Aditivně s nadzvukovou rychlostí

Společnost Hermle je známá především pro svá přesná pětiosá obráběcí centra a nadstandardní servis. Už málokdo ví, že vyvinula také stroj pro aditivní výrobu kovových dílů. Přestože je i tato technologie založena na postupném vrstvení kovového prášku na součást, nedochází zde ke spékání prášku laserovým paprskem, ale kovový prášek je tryskou doslova nastřelován na díl nadzvukovou rychlostí. Na detaily jsme se zeptali technického zástupce společnosti Hermle Pavla Němečka.

Názorové fórum odborníků

Respondenty jsme požádali o jejich názor na podobu budoucích technologií. Současná situace přinesla mnoho omezení, mezi jinými postihla také dodavatelské řetězce, znemožnila včasné dodávky do výrobních podniků a přinesla vyšší nároky na bezpečnost zaměstnanců. Jaké nové technologie podle vás mají v současné situaci největší potenciál se prosadit?

Svařování mědi pomocí vláknového laseru

Rychlý rozvoj v oblasti elektromobility vede ke zvýšení poptávky po svařování mědi. To, co ji činí pro danou aplikaci ideální (tj. vysoká elektrická a tepelná vodivost), ji zároveň činí obtížně svařitelnou konvenčními vláknovými lasery. Díky vyšší efektivitě, zhruba dvojnásobné, někteří výrobci zkoušejí používat zelené pevnolátkové lasery. Výsledkem je stabilnější a méně citlivý proces, než jaký byl možný u standardních vláknových laserů.

Procesně stabilní zpracování recyklátů

Do roku 2025 si Evropská unie klade za cíl ročně více než zdvojnásobit používání recyklátů při výrobě plastových výrobků [1, 2]. K dosažení tohoto cíle jsou kromě závazku firem působících na trhu a vyšší kapacity při zpracování plastového odpadu zapotřebí především nové technologie zpracování. Recykláty je nutné používat v daleko větší míře a v ještě vyšších poměrech. S novými procesy vstřikování na jedné straně a inteligentní podporou na straně druhé sleduje výrobce vstřikovacích strojů Engel různé a často velmi slibné přístupy. Výroba boxů a kontejnerů ukazuje na velký potenciál.

Uplatnění kovového 3D tisku

Společnost Misan z Lysé nad Labem se aditivními technologiemi kovových dílů zabývá a tato zařízení v České republice distribuuje už osm let. Dalo by se říct, že je jedním z průkopníků s těmito technologiemi na českém trhu. Z toho pochopitelně vyplývají také její bohaté zkušenosti s touto relativně mladou výrobní disciplínou. Na otázky, kde tyto technologie nacházejí uplatnění a v jakých oblastech mohou vyniknout, jsme se ptali aplikačního inženýra pro kovové aditivní technologie Jana Hudce.

Aditivní výroba velkých dílů

Porto patří k největší průmyslové oblasti Portugalska. Od roku 1956 zde sídlí přední světový výrobce strojů technologie tváření – společnost Adira.

Fórum výrobních průmyslníků

Jaké zásadní problémy vám současná doba přináší do chodu firmy, jak se je snažíte řešit a s jakým výsledkem?

Předplatné MM

Dostáváte vydání MM Průmyslového spektra občasně zdarma na základě vaší registrace? Nejste ještě členy naší velké strojařské rodiny? Změňte to a staňte se naším stálým čtenářem. 

Proč jsme nejlepší?

  • Autoři článků jsou špičkoví praktici a akademici 
  • Vysoký podíl redakčního obsahu
  • Úzká provázanost printového a on-line obsahu ve špičkové platformě

a mnoho dalších benefitů.

... již 25 let zkušeností s odbornou novinařinou

      Předplatit