Témata
Reklama

Principy konstrukce plastových výlisků

Rychlý vývoj moderních 3D CAD systémů způsobil evoluční krok v návrhu produktů, jehož výsledkem jsou organičtější formy se vzrůstající složitostí. Cílem tohoto článku je zaměřit se na nové konstrukční principy a jejich dopad na obrábění a výrobní procesy.

Mezi klíčové konstrukční principy, které musí konstruktér zvážit, patří tloušťka výlisku, úkosy, tvar a tloušťka žeber, zaoblení a další. Přestože konstruktér nezná v době návrhu přesný dopad na výrobu, musí tyto parametry definovat před zajetím nástroje do materiálu, dokud jsou náklady na změny minimální.

Reklama
Reklama
Příklady vhodných změn tlouštěk stěny

Stejnoměrná tloušťka stěn

Po celou dobu konstrukce se konstruktéři musí snažit udržet stejnoměrnou tloušťku stěn na celém modelu. Jakákoliv větší nerovnoměrnost může způsobit problémy typu vnitřních vzduchových kapes, propady povrchu, nepředvídatelná smrštění a v neposlední řadě prodloužení celého cyklu. Je-li změna tloušťky nezbytná, měla by být plynulá, aby umožňovala hladký průtok materiálu bez vytváření míst s vnitřním pnutím, která mohou způsobit rozpad dílu, a to buď během testování, což si vynutí nový návrh dílu, nebo pak přímo při vstřikování plastu, což vyvolá další náklady na úpravu formy.

Konstrukce žeber

Konstrukce žeber

Při návrhu žeber je důležité pamatovat na to, že jsou součástí konstrukce jen kvůli zvýšení pevnosti a nemělo by docházet ke kompromisům z důvodu estetiky výlisku. Konstruktéři obvykle při jejich návrhu postupují podle standardních metod. Je-li to možné, nemělo by docházet ke kombinaci tlustých a tenkých žeber. Zde jsou některé z nejobvyklejších konstrukčních zásad:
• tloušťka žeber by měla být mezi 60 a 80 % tloušťky stěny;
• maximální výška žebra by neměla být větší než trojnásobek tloušťky stěny. Pro zvýšení pevnosti je lepší zvýšit počet žeber nežli zvětšovat jejich výšku;
• minimální vzdálenost mezi žebry by měla být dvojnásobkem nominální tloušťky stěny;
• poloměr zaoblení hran žeber by neměl být větší než 50 % tloušťky žebra;
• extrémně tlustá žebra by měla být odstraněna;
• jako nejvhodnější se jeví křížení žeber (pokud to design dovoluje), protože poskytuje větší stabilitu a umožňuje rovnoměrné rozložení napětí.

Kumulace materiálu může vést ke vzduchovým kapsám nebo poklesům materiálu.

Zaoblení

Velké množství plastových výlisků má problémy v důsledku ostrých rohů a nedostatečných poloměrů zaoblení. Ostré rohy vytvářejí místní vnitřní pnutí, důsledkem čehož může být popraskání a předčasný rozpad plastového dílu. Přidání zaoblení na všechny ostré rohy nejenže sníží vnitřní pnutí, ale také zlepší tečení materiálu. Obecně se dodržuje pravidlo, že na vnitřní stranu ostrého rohu se aplikuje minimální zaoblení s poloměrem rovným 0,5násobku tloušťky stěny a na vnější stranu ostrého rohu 1,5násobku tloušťky stěny výlisku, případně větší rádius, pokud to konstrukce dílu dovoluje.

Úchyty v rozích včleněné do stěn působí zhutnění materiálu.

Konstrukce úchytů

Úchyty jsou jednou ze základních komponent při návrhu plastového dílu. Slouží jako spojovací element při tvorbě sestavy, ale kromě toho také zvyšují pevnost dílu. Podobně jako u žeber, tak i u konstrukce úchytů je třeba zvažovat tloušťku jejich stěn. Následující pravidla pomáhají vyhnout se povrchovým nedokonalostem, jako jsou vnitřní kapsy, známky poklesu povrchu a nepředvídatelná smrštění:

• tloušťka úchytu by měla být 60 % nominální tloušťky stěny. Je-li tloušťka stěny dílu větší než 4 mm, tloušťka úchytu by neměla přesáhnout 40 % této nominální tloušťky;
• výška úchytu by neměla být větší než je 2,5násobek průměru díry úchytu;
• úchyty v rozích, včleněné do stěn, způsobí zhutnění materiálu;
• vysoké můstky úchytů pomáhají tečení materiálu a odvzdušnění a snižují pravděpodobnost vzniku vzduchových kapes.

Základna by měla být u žeber nebo úchytů zaoblena pro lepší rozložení namáhání. Pokud by tomu tak nebylo, zatížení by nebylo rozloženo rovnoměrně a jeho špičky by vedly k rozlomení a rozpadu dílu. Na druhou stranu, pokud by zaoblení bylo příliš velké, docházelo by k přílišnému zhutnění materiálu, a to by vedlo ke vzduchovým kapsám nebo propadům povrchu během formování. Tytéž principy platí v místech, kde se žebro nebo úchyt dotýká hrany dílu.

Lepší variantou je konstrukce úchytů s kolmými můstky.

Naštěstí CAD systémy přicházejí s analytickými nástroji, které umějí spočítat a zobrazit tloušťku modelu a potenciální problémové oblasti. Obvykle jsou k dispozici dvě metody – první je založena na velikosti koule, kterou je možné odvalovat modelem, aniž by došlo k protnutí s jakoukoliv další stěnou. Druhá je tradičně založena na paprsku, který prochází modelem podél normály povrchu, dokud nedojde k dotyku s další stěnou.

Úkos

Potřeba úkosování je všeobecně známa, ale ve fázi konstrukce často opomíjena. Vypadá to jako jednoduchý problém, ale pokud není úkos aplikován ve správnou chvíli modelování dílu nebo jsou-li dodatečně vytvářena komplikovaná zaoblení, může být přidání úkosu složitým úkolem.

Analýza tloušťky stěn umožní konstruktérům definovat potenciální problémy před vytvořením prototypu.

Úkosový úhel je důležitým technologickým parametrem, který umožňuje bez problémů vytáhnout výlisek z dutiny formy. Vysoký tlak vstřikovaného materiálu a jeho následné smrštění často způsobují obtíže při vyjímání dílu z formy. Je sice možné zaformovat díl s nulovým úkosem (nebo dokonce se záporným úkosem) za využití čelistí, vyhazovačů nebo dvoustupňového vyhazování, ale všechny tyto postupy výrazně zvyšují složitost a cenu formy.

Ačkoliv neexistuje přesné pravidlo, jaký úkos by měl odpovídat jakému modelu, existuje mnoho faktorů, které ovlivňují jeho optimální hodnotu. Obecně platí, že tenkostěnné díly s vysokým tlakem vstřikování potřebují větší úkos. Materiál je v tomto případě do dutiny více vtlačen. Proto díly, které nejsou vstřikovány pod vysokým tlakem, mohou mít menší úkos.

V případě hladkých povrchů je doporučen jako minimální úkosový úhel 0,5° na každé stěně. Úkosový úhel 1° umožňuje lehké vyhození výlisku pro většinu povrchů. Přístup ke strukturovaným povrchům je odlišný, neboť nestejnoměrný povrch může při nedostatečném úkosu táhnout a drhnout. Doporučovaným pravidlem je přidat ke standardnímu úkosu nejméně 1,5° na 0,025 mm hloubky nerovnosti povrchu.

Vliv úkosu žebra na tloušťku stěny Velmi důležitým aspektem je hloubka tažení (hluboká žebra). Čím je délka úkosu větší, vyhození dílu je snadnější, ale narůstá tloušťka materiálu. Jak bylo uvedeno výše, může v tomto případě docházet k výrazným změnám výlisku, jako jsou vnitřní kapsy, poklesy povrchu a nepředvídatelné další deformace. Například úkosový úhel 1° na hloubce 100 mm zvýší tloušťku materiálu o 1,75 mm na každé straně.

I v případě, že ve fázi konstrukce není přesně znám materiál výlisku, je třeba zvažovat úkosový úhel. Například polymery s plnivem (obvykle skleněným) mají menší hodnoty smrštění, a proto není snadné je z dutiny vyjmout. Je proto nutné aplikovat větší úkosové hodnoty.

Úkosová analýza rychle detekuje potenciální problémové oblasti při formování ještě před konstrukcí jádra a dutiny.

Ve výlisku je snadné vyrobit díry a typicky se k tomu používají čelisťové kolíky. Ovšem slepé díry s nulovým úkosem často způsobují na vrcholu kolíku při vyhazování efekt podtlaku (náchylnější jsou k tomu díly s lesklým povrchem). V tomto případě malý úkosový úhel vyhazování velmi pomůže. Konečně, čím snadněji je možné vyjmout výlisek z formy, tím je třeba méně vyhazovačů.

Umístění vtoků

Umístění vtoků zásadně určuje chování tekoucího materiálu, studené spoje, smrštění, zvlnění a kvalitu povrchu lisovaného dílu. Většinou se dává přednost umístění vtoku do nejtlustší části dílu, aby nedocházelo k propadům povrchu v důsledku nedostatečného stlačení materiálu. Studené spoje jsou takové, kde se potkávají dva toky materiálu a tvoří relativně slabý, potenciálně studený spoj. Tyto oblasti jsou nejnáchylnější k praskání pod zatížením. Složité formy vždy obsahují oblasti těchto spojů, a pokud jejich množství není možné minimalizovat, měly by být přemístěny do méně kritických oblastí dílu. Toho se obvykle dosahuje buď manipulací s umístěním vtoku, nebo změnou tloušťky stěn dílu.

Analýza vtoků

Závěr

Zabývali jsme se šesti principy konstrukce plastových výlisků. Ačkoliv žádný z nich nelze obecně aplikovat na každou konstrukci, mohou být solidními pomocníky v konstrukční práci. Ve strojírenském designu je třeba pamatovat na to, že každý projekt je neustálým kompromisem mezi designem a vyrobitelností.

Alžběta Plachá Králová

visi
alzbeta@visi.cz
www.visi.cz

Reklama
Vydání #1,2
Kód článku: 130112
Datum: 13. 02. 2013
Rubrika: Trendy / Plasty
Autor:
Firmy
Související články
Budoucnost v simulacích vstřikování plastových dílů

Přesnost predikce budoucí kvality plastových dílů a forem pomocí simulačního softwaru pro vstřikování se stále zvyšuje. Je to dáno zejména využitím stále dokonalejších výpočetních technik a modelů. Zároveň roste šíře nabízených modulů pro různé technologie vstřikování.

Vnitřní napětí v plastovém výrobku

Vstřikované plastové výrobky mají různou úroveň vnitřního (zbytkového) napětí. Vnitřní napětí ovlivňuje kvalitu výrobku, především pak jeho pevnost, rozměrovou přesnost a u transparentních dílů vznik případných vzhledových vad.

Návrh plastového dílu a jeho optimalizace

Vstřikování polymerů je pružná výrobní metoda pro výrobu tenkostěnných plastových dílů. Vstřikování umožňuje v automatickém cyklu vyrobit komplexní geometrii dílu při nízké energetické spotřebě a krátkém časovém cyklu. Komplexností geometrie je myšlena nejenom výroba jednotlivých dílů, ale také sdružení několika dílů do jednoho celku. Tímto způsobem lze minimalizovat náklady na montáž a zároveň také minimalizovat vady vzniklé při montáži.

Související články
Modelování kompozitních materiálů a struktur

I když v současnosti zaznamenáváme výrazný nárůst aplikací kompozitních materiálů v automobilovém průmyslu, simulace kompozitních struktur stále představují velkou výzvu. Simulační software Digimat nabízí unikátní přístup v této oblasti simulací a umožňuje dosáhnout dosud nebývalé přesnosti predikcí.

Reklama
Reklama
Reklama
Reklama
Související články
Optimalizace ziskovosti plastového výlisku

Expertní systém CalcMaster 7.2 pracující na principu odražené vlny vnáší nové možnosti do procesu nabídky a poptávky pro formy na plasty a lehké kovy.

Příprava pracovníků pro výrobu technologií vstřikování plastů

Následující příspěvek představuje jeden ze způsobů přípravy pracovníků ve firmách, jejichž hlavní pracovní náplní je technologie vstřikování plastů

Zavedení nového softwaru zefektivnilo konstrukci forem

Společnost Dramco Tool & Die Co. z Grand Islandu se specializuje na výrobu komplexních vstřikovacích forem pro automobilový a spotřební průmysl. S ohledem na potřebu upgradovat a změnit systém konstrukce a výroby forem za účelem zvýšení efektivity začala hledat systém, který by umožňoval rychlou konstrukci forem, automatizaci některých procesů a umožňoval práci jak s objemovými tělesy, tak s volnými plochami.

Plasty a robot – jde to dohromady?

Žijeme v době, kdy nás plasty provázejí na každém kroku. Možná si ani neuvědomujeme, kde všude nám pomáhají, kde nás ovlivňují. Od tužky či propisky přes klávesnici, u které sedíme skoro každý den, po stravování a umělohmotné vařečky, které nahradily ty dřevěné, jež používaly naše babičky. Snažíme se usnadnit si život. Těžké díly ze železa vyměnit za lehčí, plastové. Stejně tak i tvůrci softwaru se snaží zjednodušit výrobu.

Investice do softwaru pro formařinu se vrátila do měsíce

Společnost Formaplex Limited se sídlem ve Velké Británii se zabývá převážně vývojem a výrobou hliníkových a ocelových vstřikovacích forem pro firmy z oblasti automobilového a leteckého průmyslu. Její investice do softwaru VISI Flow se vrátila už po prvním měsíci používání.

První plnobarevná stolní 3D tiskárna

Společnost Mcor představila jako první na světě plnobarevnou stolní 3D tiskárnu Mcor ARKe a klade si za cíl dostat tuto 3D tiskárnu do každé kanceláře či učebny.

Problematika vstřikování plastových dílů pro automobily

Příspěvek popisuje podmínky pro výrobu vstřikovaných plastových dílů pro automobily včetně vznikajících problémů a navazuje na článek Snížení rizika vzniku vad při vstřikování plastových dílů, který byl uveřejněn v příloze Plasty časopisu MM Průmyslové spektrum č. 3/2014 (viz též www.mmspektrum.com/140312). Autor vychází z dlouholeté zkušenosti ve firmě Plast Form Service I. M., která se výrobou těchto dílů zabývá již od roku 1998.

Efektivní vývoj plastových dílů a vstřikovacích forem

V mnoha odvětvích – včetně automobilového průmyslu, zdravotnických technologií nebo spotřebního zboží – představuje proces vstřikování do forem nejpoužívanější a ekonomicky nejvýhodnější metodu výroby plastových dílů. Zásadní je zde povědomí, jak návrh jednotlivých dílů ovlivní jejich vyrobitelnost, a naopak – a to ještě před zahájením výroby. Řešení nabízí konstrukční simulace.

Nový materiál ASA pro 3D tisk v osmi různých barvách

Společnost MCAE Systems, oficiální distributor firmy Stratasys, rozšířila nabídku materiálů pro 3D tisk o nové digitální materiály a také o termoplast ASA dostupný v osmi barvách. ASA nyní nabízí nejširší barevnou škálu ze všech materiálů pro technologii FDM.

Digitální prototypy v techologii vstřikování plastů

Analýzy digitálních prototypů v Autodesk Simulation Moldflow umožňují provádět optimalizaci celého vstřikovacího procesu plastů, od optimalizace designu samotného výrobku přes nastavení vstřikovacího stroje a výběru nejvhodnějšího plastu až po optimalizaci výrobního nástroje, tj. vstřikovací formy. To vše po stránce technologické i pevnostní.

Reklama
Předplatné MM

Dostáváte vydání MM Průmyslového spektra občasně zdarma na základě vaší registrace? Nejste ještě členem naší velké strojařské rodiny? Změňte to a staňte se naším stálým čtenářem. 

Proč jsme nejlepší?

  • Autoři článků jsou špičkoví praktici a akademici 
  • Vysoký podíl redakčního obsahu
  • Úzká provázanost printového a on-line obsahu ve špičkové platformě

a mnoho dalších benefitů.

... již 25 let zkušeností s odbornou novinařinou

      Předplatit