Témata
Reklama

Nekonvenční metody obrábění - 6. díl

Další díl seriálu, který je připravován ve spolupráci s Výzkumným centrem pro strojírenskou výrobní techniku a technologii, se zabývá metodami obrábění elektronovým paprskem.

6 Obrábění paprskem elektronů

Obrábění elektronovým paprskem je založeno na využití kinetické energie proudu urychlených elektronů.

Reklama
Reklama
Obr. 6.1. Princip metody obrábění elektronovým paprskem: a) vnik elektronů do materiálu, b) erupční odpařování materiálu, c) opětný vnik elektronů do materiálu 1 – elektronový paprsek, 2 – páry odpařeného kovu

6.1 Princip metody

V místě dopadu paprsku elektronů se jejich kinetická energie mění v energii tepelnou. Materiál obrobku se taví a následně odpařuje. Paprsek vniká do materiálu do určité hloubky, kde se pohyb elektronů zastaví. Vzniklá tepelná energie koncentrovaná pod povrchem způsobuje erupční odpařování materiálu. Částečky vypařujícího se materiálu se pohybují značnou rychlostí z otvoru. Vzniklé páry odpařeného materiálu jsou zionizovány a způsobí nové zaostření paprsku v pracovním místě. Opakováním tohoto procesu dojde k úběru materiálu.

Pracovní režim může být:

  • pulzní – používá se nejčastěji při aplikacích vrtání elektronovým paprskem. Odpařování materiálu probíhá v podobě postupných erupcí, přičemž se dosáhne přesného opracování materiálu (doba pulzu je od 2 µs do 0,01 s, při frekvenci pulzů 500 až 10 000 Hz);
  • kontinuální (nepřetržitý) – odpařování materiálu probíhá plynule.
  • termické procesy – svařování, pájení, vrtání dlouhých děr malých průměrů, řezání a tepelné zpracování materiálů;
  • netermické procesy – elektronový paprsek slouží k vyvolání chemické reakce. Týká se především oblasti litografických technologií, které se používají v elektrotechnice při výrobě čipů. Je možné vytvořit na čipu až 200 000 strukturálních detailů, čehož nelze jinými technologiemi dosáhnout.
Obr. 6.2. Schéma zařízení pro obrábění paprskem elektronů: 1 – wolframový drát, 2 – elektronové dělo, 3 – izolátor, 4 – elektronový paprsek, 5 – elektromagnetické čočky, 6 – průzor, 7 – obrobek, 8 – pracovní stůl, 9 – elektrostatické vychylování elektronového paprsku, 10 – vývěvy, 11 – napájecí zdroj

6.2 Zařízení pro obrábění materiálů paprskem elektronů

Zařízení je tvořeno těmito hlavními skupinami (obr. 6.2):

  • elektronové dělo (2) – slouží ke generaci, urychlení a zaostření svazku elektronů. Je tvořeno žhavenou wolframovou katodou a anodou. Elektrony uvolněné z katody jsou anodou urychleny na rychlost rovnající se asi dvěma třetinám rychlosti světla;
  • takto vzniklý elektronový paprsek je pomocí elektromagnetického zaostřovacího systému – elektromagnetické čočky (5) – zaostřován na velmi malou plochu, čímž se dosáhne vysoké plošné hustoty energie (asi 108 W.cm-2). Aby bylo dosaženo vysoké účinnosti využití energie elektronů (až 95 %), probíhá pracovní cyklus většinou ve vakuu;
  • systém pro vychylování paprsku (9) – pracuje na elektromagnetickém principu;
  • napájecí zdroj (11) – může být nízkonapěťový (do 60 kV) s výkonem záření 3 až 10 kW nebo vysokonapěťový (do 150 kV) s výkonem záření 8 až 100 kW;
  • pracovní komora – mívá objem 0,03 až 17 m3. V zařízeních, u nichž probíhá pracovní cyklus ve vakuu, je součástí pracovní komory systém vakuových pump, který umožňuje vytvořit v pracovní komoře vakuum až 10-3Pa.
  • číslicový řídicí systém – je navržen podobně jako u obráběcích strojů s tím rozdílem, že je zde řízen také výstupní výkon elektronového děla, šířka elektronového paprsku, jeho zaostření a vychylování. Do výchozí pracovní polohy může být elektronový paprsek naváděn ručně pomocí televizní obrazovky nebo automaticky číslicovým řídicím systémem.
Obr. 6.3. Zařízení pro svařování paprskem elektronů
Příklad výrobku (svařování elektronovým paprskem)

6.3 Obrobitelnost materiálů

Obrobitelnost materiálů elektronovým paprskem je dána jejich fyzikálními vlastnostmi a nezávisí na mechanických vlastnostech. Elektronový paprsek lze použít pro opracování především těžkoobrobitelných materiálů, jako žáropevných ocelí, austenitických ocelí používaných při stavbě jaderných reaktorů, slitin zinku s niobem, hliníkových a titanových slitin, křemíku, drahokamů, tantalu, wolframu a speciálních slitin používaných v letectví a kosmonautice. Elektronovým paprskem se hůře obrábí mosaz, bronz, zinek, hořčík a slinované kovy.

Obr. 6.5. Druhy paprsku a) klasické svařování, b) svařování elektronovým paprskem, c) kalení elektronovým paprskem

6.4 Vrtání malých děr paprskem elektronů

Elektronový paprsek se používá pro vrtání děr malých průměrů. Lze vrtat díry již od průměru 0,015 mm, a to rychlostí až 4 000 děr za sekundu. Při vrtání hlubokých děr, s poměrem délky k průměru díry až 100, musí být průměr paprsku 2x až 4x menší, než je požadovaný průměr vrtané díry. Tolerance vyvrtané díry je 5 až 20 % jejího průměru.

6.5 Svařování paprskem elektronů

Elektronový paprsek je vhodný pro svařování obtížně svařitelných nebo vůbec nesvařitelných materiálů. Svary jsou bez trhlinek, málo porézní a metalurgicky čisté. Je možno svařovat jak tenké výrobky o tloušťce 1 mm, tak provádět i svary hluboké až 40 mm.

Obr. 6.6. Principy svařování elektronovým paprskem: a) svařování pod vysokým vakuem, b) svařování pod částečným vakuem, c) svařování bez vakua

6.6 Řezání paprskem elektronů

V tab. 6.2 jsou uvedeny pracovní parametry pro řezání elektronovým paprskem. V současné době je řezání elektronovým paprskem nahrazováno řezáním laserem.

Ing. Jaroslav Řasa, CSc.,

Ing. Zuzana Kerečaninová, Ph.D.

ČVUT, VCSVTT

www.rcmt.cvut.cz

j.rasa@rcmt.cvut.cz

z.Kerecaninova@rcmt.cvut.cz

Chybějící tabulky naleznete v tištěné verzi časopisu.

Reklama
Vydání #6
Kód článku: 80625
Datum: 11. 06. 2008
Rubrika: Inovace / Obrábění
Autor:
Firmy
Související články
Teleskopické kryty s rodným listem

Moderní obráběcí stroje jsou sofistikované mechatronické celky, kde pohyb jednotlivých částí stroje zajišťují pohybové osy (lineární a rotační) vybavené vedením, zpětnovazebně řízeným pohonem a vhodným krytem. Ačkoliv kryty nejsou vnímány jako klíčový komponent stroje, díky zajištění ochrany osy před nepříznivými vlivy okolí a znečištěním od výrobního procesu pomáhají zajistit spolehlivost chodu celého stroje. Krytování však působí v rámci pohybové osy jako přidaná hmota a zdroj pasivních odporů. Tím jsou negativně ovlivněny vlastnosti osy (např. dynamika a přesnost pohybu) a množství energie, nutné pro vyvození pohybu.Moderní obráběcí stroje jsou sofistikované mechatronické celky, kde pohyb jednotlivých částí stroje zajišťují pohybové osy (lineární a rotační) vybavené vedením, zpětnovazebně řízeným pohonem a vhodným krytem. Ačkoliv kryty nejsou vnímány jako klíčový komponent stroje, díky zajištění ochrany osy před nepříznivými vlivy okolí a znečištěním od výrobního procesu pomáhají zajistit spolehlivost chodu celého stroje. Krytování však působí v rámci pohybové osy jako přidaná hmota a zdroj pasivních odporů. Tím jsou negativně ovlivněny vlastnosti osy (např. dynamika a přesnost pohybu) a množství energie, nutné pro vyvození pohybu.

Japonské brousicí stroje

Japonská společnost Okamoto působí na trhu již necelých sto let. Za dobu své existence vyprodukovala mnoho typů strojů, všechny však brousicí. Následující článek představuje historii tohoto tradičního japonského výrobce a průřez portfoliem brousících strojů.

Nový rekord v HPC frézování

Společnosti Chiron a Gühring, výrobce strojů a specialista na nástroje, společně dosáhly významného rekordu v oblasti vysokovýkonného frézování: 1 000 cm3 oceli (16MnCr5) bylo obrobeno za 60 sekund. To představuje úběr osmi kilogramů oceli za minutu. A také extrémní třískový objem v čase a enormní posuv.

Související články
Nástroje ve znamení podnikové mantry

Tento článek si klade za cíl představit zajímavé nástroje, z nichž některé se dokážou sami ohlásit k údržbě, některé se dokážou třeba i samostatně nastavit. Vše je inspirováno dnešní podnikovou mantrou jednoduché obsluhy, procesní spolehlivosti a úspory vedlejších časů a tím i nákladů.

Reklama
Reklama
Reklama
Reklama
Související články
Bezobslužná výroba forem rychle a přesně

Požadavky na výrobce nástrojů pro vstřikování plastových dílců rostou kontinuálně, současně se zvyšuje tlak na ceny ze zemí s nízkými mzdami. Pro výrobu těchto nástrojů jsou proto vyžadovány obráběcí stroje, které jsou vysoce produktivní i velmi přesné, aby bylo možné snížit náklady na opravu zmetků a rychle splnit přání zákazníků. Kromě toho musí "ladit" podpora ze strany výrobce stroje.

Alternativa k aditivním technologiím

Kdo rychle potřebuje nějaký prototyp, tomu doporučuje výrobce strojů Röders z německého Soltau místo výroby s následným leštěním vyfrézovat model z celého bloku hliníku. "To jde mnohem rychleji," říká vedoucí prodeje Dr.-Ing. Oliver Gossel. Jak lze tímto způsobem vyrobit držák na mobil za 30 minut - a to dokonce s vysoce lesklým povrchem - demonstruje Röders na svém stroji RXP601 s použitím 6 mm diamantové frézy od firmy Horn.

Strojírenské podniky v době pandemie

Pandemie koronaviru uzavřela hranice naší republiky a zahraniční pracovníci se nedostanou do zaměstnání. Řada domácích zaměstnanců musela nastoupit do karantény. Mnoho českých strojírenských podniků se tak dostalo do nemalých problémů. Firma Grumant hledala recept, jak se takovým problémům vyhnout nebo alespoň minimalizovat jejich následky.

Vysoce výkonné vrtání kovaných dílů

Kované ocelové díly se často používají v aplikacích s vysokými požadavky na pevnost a spolehlivost, jako jsou např. oka ojí pro zemědělské stroje. U těchto dílů jsou kladeny požadavky na vysokou pevnost a tvrdost, což kovaná ocel splňuje. A pro obrábění těchto materiálů jsou samozřejmě třeba vysokovýkonné stroje.

Pohodlné upínání magnetem

Pokud jde o úsporu času při seřízení a upnutí obrobků bez deformace, je elektricky aktivovaná technologie permanentních magnetů považována za špičkový systém. S trochou konstrukční zručnosti mohou být během sekundy a bez deformace upnuty a z pěti stran obrobeny především velkoformátové díly. Ani v oblasti standardních modulů nezůstává vývoj bez odezvy. Moderní magnetické upínací desky umožňují optické nebo automatizované monitorování upínacího procesu.

Manipulační systém HS flex heavy

Firma Hermle se již téměř dvacet let zabývá automatizací svých obráběcích center a jako pokračování tohoto vývoje nyní uvádí na trh výkonný, kompaktní a rovněž cenově mimořádně atraktivní automatizační nástroj - manipulační systém HS flex heavy.

Řídicí systém z vlastní dílny, 3. díl: Pokročilé technologické aplikace

Třetí díl našeho seriálu o řídicím systému OSP - P300A firmy Okuma navazuje na dvě předchozí kapitoly, ve kterých jsme stručně představili architekturu systému a inteligentní funkce, které podstatně navyšují přesnost stroje, kvalitu obráběného povrchu i hospodárnost a bezpečnost stroje. Tato část série bude o technologických aplikacích implementovaných do OSP k jednoduchému použití operátorem.

Současný vývoj v oblasti řezných nástrojů

Vývojové trendy v segmentu obráběcích řezných nástrojů jsou navázány na progresi ve strojírenské výrobě a reagují na aktuální potřeby průmyslu. Výzkum a vývoj již dlouhodobě soustřeďuje svou pozornost na vývoj řezných materiálů, systémů povlakování, konstrukce moderních nástrojů využívajících princip minimálního mazání a chlazení MQL, koncepty inovativních upínacích soustav. V současnosti jsou rozvíjeny technologie pro inteligentní výrobu s aplikací předností Průmyslu 4.0, včetně automatizace výrobního procesu, sběru dat o zařízeních, procesech a vyráběných dílcích. Na veletrhu EMO Hannover 2019 byly společnostmi představeny chytré technologie a řešení inteligentního řízení procesu obrábění. Digitalizace a konektivita jsou nyní důležitější než kdykoliv předtím.

Automatizační řešení navzdory překážkám

Firma Piesslinger se specializuje na povrchovou úpravu hliníku. S automatizací výroby dílů pomohla firma Hermle a prokázala, že různé tolerance a choulostivé povrchy nemusejí být důvodem, proč se vzdát myšlenky bezobslužného obrábění.

Řídicí systém z vlastní dílny, 1. díl: Filozofie jednoho zdroje

V sérii navazujících článků se budeme zabývat systémem OSP - P300A, který v současné době završuje řadu řídicích systémů vyvinutých a vyráběných společností Okuma pro řízení CNC obráběcích strojů rovněž původem z Okumy.

Reklama
Předplatné MM

Dostáváte vydání MM Průmyslového spektra občasně zdarma na základě vaší registrace? Nejste ještě členem naší velké strojařské rodiny? Změňte to a staňte se naším stálým čtenářem. 

Proč jsme nejlepší?

  • Autoři článků jsou špičkoví praktici a akademici 
  • Vysoký podíl redakčního obsahu
  • Úzká provázanost printového a on-line obsahu ve špičkové platformě

a mnoho dalších benefitů.

... již 25 let zkušeností s odbornou novinařinou

      Předplatit